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Abstract

A statistics may be regarded as a functor from individuals to com-
posites. Each of the classical groups generates a unique natural quantum
statistics. The A groups generate Fermi-Dirac, the C Bose-Einstein, and
the B and D, the newer Schur-Wilczek statistics, where the individual
is described in a quadratic space and the composite in its spinor space.
S-W is intermediate between F-D and E-B in the sense that swaps, which
are +1 for E-B statistics and —1 for F-D, have eigenvalues +1 or *:
for S-W. Of these statistics only the S-W is 2-valued and gives rise to
spinors. Space-time points are therefore likely to be S-W, with spin aris-
ing from more fundamental swap. We argue that below the quark scale
but far above the Planck scale, space-time, matter, measurement and the
dynamical law are no longer distinct but fuse into one variable, the dy-
namic of the system; a localized refinement of the S matrix theory of
Heisenberg. S-W statistics then implies a Clifford-algebraic language for
physics, connecting the spinorial chessboard to the four-dimensionality of
space-time.
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Dedication

This contribution carries forward the pleasurable discussions of quantum
logic and quantum set theory that John Stachel and I had at Stevens
Institute of Technology in the 1950’s. It is a privilege to have had him as
classmate and colleague, and I wish him many more productive years.

1 Beyond quantum set theory

In the intervening moments, a plausible quantum set theory was formu-
lated and applied to space-time with some encouraging results [Finkelstein
(1996)]. Here I point out that set theory is just one of three main lines of
combinatorics, one for each of the main lines of classical groups.

Each line of classical groups defines its own combinatoric algebra in a
way described below.

Set theory and its quantum correspondent, Fermi-Dirac statistics, come
from the A line of unitary groups. It was over-optimistic to hope that
quantum sets might be the appropriate combinatorics for the elementary
parts of space-time, but we had no better statistics in the 1950’s.

The C line of symplectic groups brings us the Bose-Einstein statistics.
The composite with B-E statistics we call the sib. A classical sib would
be a sequence of any number of terms, all the same.

B-E statistics was briefly considered for space-time points [Finkelstein,
Saller and Tang (1998)], but does not account for the stability of space-
time against collapse.

I leave aside the exceptional groups and their exceptional statistics.

Finally, the B and D lines of orthogonal groups lead to the Schur-
Wilczek statistics, the main point of this note. Where F-D gives rise to
Fermi algebra and E-B to Heisenberg algebra, S-W statistics generates a
Clifford algebra.

F-D and B-E statistics associate with each individual two nilpotent
operators representing creation and annihilation. S-W statistics associates
with each element one Clifford unit representing a swap.

S-W is the only double-valued statistics of the classical-group statistics,
and so the most natural of them for space-time points. And the last to be
discovered [Wilczek (1997). S-W statistics should not be confused with
the earlier anyon statistics also associated with Wilczek.]

Composites with S-W statistics will be called squads. There are many
classical sets and some classical sibs but no classical squads.

2 Concept of the dynamic

If we wish to study the dynamical development of a system under maximal
quantum resolution, so that the quantum structure of space-time reveals
itself, we must improve on several approximations of the present quantum
theory.



In the quantum theory of Heisenberg and Bohr, the dynamics is re-
garded as a completely describable and therefore classical object, de-
scribed for example by a Hamiltonian operator or an S matrix summa-
rizing an infinite number of quantum experiments, sandwiched between
inlet and outlet channels, as in

D= (w®sS® | (1)

One then contracts D to find the transition amplitude. This familiar
assumption of quantum theory is inaccurate on several counts.

First, due to their quantum structure and their gravitational fields,
our experiments are not infinitesimal in size and infinite in number, but
necessarily finite in size and number. Therefore our knowledge of the
dynamics is incomplete in principle. We hypothesize therefore that the
dynamics too is a quantum variable, with no complete description like (1)
but only maximal ones, combining by quantum superposition.

Second, the propagator S is not truly independent of (w| and |a), the
inlet and outlet actions that surround it, as (1) assumes. At very least,
our boundary actions have inevitable gravitational consequences in the
space-time they bound. These effects are estimated in Finkelstein (1999).
They lead to a breakdown of field theory at large times T as well as small

times 7, with
r=\/TpT > Tp,

about 15 orders of magnitude above the Planck time if field theory holds
as far down in the energy scale as 1 ueV. This is resolvable by energies as
low as ~ 100 TeV. Therefore we are already immersed in breakdowns of
the classical continuum that we have not yet learned to see. One of these,
presumably, is the mass spectrum of the elementary particles, which might
reflect the Brillouin zone structure of the vacuum hypercrystal.

Third, (1) assumes that the dynamics D is a function of the other
operators of the system. But given so rich a variable as the dynamics,
one probably needs no other. Now the dynamics is our sole independent
quantum variable.

We celebrate this monistic hypothesis by singularizing “dynamics.”
All variables of the system are now functions of its dynamic, a quantum
matter-space-time-dynamical-law unity-in-multiplicity.

This inverts the current practice, where the dynamics is supposed to
be a function of all the other variables. Both in the quantum standard
model and in general relativity, the conceptual apparatus of space-time,
field operators, and action principle is all directed to describing the dy-
namics, though under less than maximal resolution, as a function of other
system variables. All of these investment must now be recovered from the
dynamic.

The variable dynamic may be regarded as generalizing, localizing, and
activating the fixed S matrix of Heisenberg. S matrix theory assumes an
underlying fundamental flat space-time, ignoring Einstein locality. The
space-time in the experimental chamber, like any other dynamical vari-
able, is known only through the processes that go on, and so can be
determined from the dynamic and should not be postulated. We assume



neither flatness nor even any definite dimension or signature under high
resolution.

We consider the simplest possibility first: that the atomic elements of
the system undergoing the dynamic have no parts. We therefore call them
points, after Euclid, and expect that the usual classical space-time points
are the correspondence limit of one or several of these quantum points.

The space-time metric tensor is a poor man's dynamics. As the La-
grangian of a massless point particle, it defines, and is operationally de-
fined by, how test bodies move under gravity. A test body is just a smallish
system with only gravitational interactions whose tides do not effect its
orbit.

The theory of the metric can therefore give precious hints toward a
theory of the dynamic. We consider the usual quantum assumption (1)
as a quantum analogue of flat-space-time physics. It presupposes a fixed
dynamics and arbitrary initial and final actions as special relativity pre-
supposes a fixed metric ad arbitrary space-time content.

In classical thought the path description varies from experiment to
experiment on the same system, while the action is fixed. In the quantum
theory, however, the dynamics assigns a probability amplitude to each
path, and is therefore identical with a superposition of path descriptions,
a highly entangled description of the one q path. This is complementary
to the specification of the end-points or for that matter of any point on
the path. In the c theory the endpoint specification is supplementary to
the dynamics description, and completes it. In the q theory the endpoint
data is complementary to the dynamics description. The existing quantum
theory describes its dynamics sharply, as a single entangled path, while
the classical theory describes its dynamics only crisply, as a set of paths.

We have yet to understand exactly how the approximation of a fixed
dynamics can work so well if indeed the dynamics is as highly variable as
I expect. Presumably it corresponds to the fact that the flat space-time
metric is a good approximation for much of physics, despite the variability
of the space-time metric, and there are several ways under study in which
this could come about.

We encapsulate next two basic quantum assumptions about the dy-
namic of the above discussion. D1 connects the theory of the dynamic
with standard quantum theory, and D2 separates it.

D1. Superposition The mazimal descriptions of of the dynamic
are the linear operators on a finite-dimensional input vector space of the
system.

For this to correspond to the usual
A = (w|Sl|a), (2)

a D must contain information about all three phases of the experiment,
input, throughflow and outtake, no longer approximated as independent,
with transition probability amplitudes given by the trace

A=TrD. (3)



In usual quantum theory InS is a sesquilinear space (a linear space
with a non-singular sesquilinear form, possibly indefinite). Gauge invari-
ance requires that the gauge generators be Hermitian, and the gauge group
structure that some of them be nilpotent. Only in an indefinite sesquilin-
ear space can a nilpotent be Hermitian.

The quantum theories that rest on Hilbert space, with its definite
sesquilinear form, are therefore not sufficiently relativistic for our purpose.
Each experimenter E uses positive dimensions of the space to represent
E’s actions upon the system S. The transformations of E to other exper-
imenters E’ are often far more numerous than transformations of S, as
in the Gupta-Bleuler quantum electrodynamics; for E is necessarily more
complex than S. Therefore there are “passive” actions with no “active”
counterpart. To represent them, E requires the negative dimensions as
well as the positive.

D2.1 Atomism The system is a composite of a finite number of
points.

The mode of composition, the statistics, is crucial. It is specified by
D2.2 below.

Usually one assumes a continuous time coordinate, allowing us to an-
alyze the dynamic into finer transformations without ever reaching non-
composite or atomic transformations. This assumption is unphysical and
leads to infinities. D2.1 cuts this process off and requires a finite scale
time 7 > 0. As Hartland Snyder pointed out long ago, this does not con-
flict with exact Lorentz invariance within the framework of quantum (or
non-commutative) geometry.

The quantum system on which the global dynamic D acts we designate
by S. The dynamic is described by a linear operator on the input vector
space InS of the system, so it transforms as a pair of systems: D ~ SS'.
To represent how we compose S of points P we write S = QP, where Qisa
quantifier defining the statistics of the point, discussed further in the next
section. Similarly the global dynamic D = QX is composed of microscopic
elementary dynamics or chronons X, which transform as pairs of points:
X ~ PP?. We thus have the commutative square of natural mappings

End:
P — X
Q: | ! “)
S — D

The horizontal arrows End lead from individuals to their dynamics. The
vertical arrows Q lead from individuals to their composites.

We may iterate Q or-End and extend this diagram downward or to the
right as necessary. For example, considered as a quantum individual, the
dynamic D has an input vector space InD of maximal descriptions, repre-
sented by the vertex D of the above diagram, and also an algebra of proper-
ties, variables and tranformations, the algebra EndInD = EndEndInS, a
double algebra defining D as a quantum groupon, extending the diagram



to the right. The dynamic then the generic element or groupon of a q
semigroup.’

The number N of P’s in S reflects the space-time extent of the process
we choose to study. We take N to be finite, leaving any limit N — oo for
last. In ordinary quantum experiments N > 1.

The S matrix of Heisenberg describes a global evolution of a system,
from infinite past to infinite future. Since we seek an analysis into elemen-
tary processes, we suppose that the dynamic describes only one step in
history. In the case of autonomous systems, the whole story is constructed
by iteration.

In order to acccount for spin 1/2 we assume the space InP is a real
quadratic space provided with a quadratic form |a)-|a) = (a|a) of some as
yet unspecified dimension N = N4 + N_ and signature N, — N_, rather
than a Hilbert space. Then its automorphism group is an orthogonal
group O(N4,N_).

Since we have assumed that the point P has no internal structure,
it has only its relations to other points, and all system variables can be
expressed in terms of point permutations. This is the extreme opposite of
the F-D and B-E statistics, where no system variables can be expressed
in terms of particle permutations (= *1). Any operator n whose N
eigenvalues number the points in a composite and distinguish them from
one another is a maximal set of commuting operators for the individual
point by itself.

The one-point orthogonal operators O : InP — InP include the per-
mutations of identical particles that usually figure in statistics, but are
more general; so I will call them permutors.

3 Point statistics

For a composite of indistinguishable particles one usually defines statistics
by a representation of the permutations of the individuals in the compos-
ite. This raises a semantic question: What quantum physical operations
can be meant by such an exchange?

Sometimes one considers permutation as a homotopy. One imagines
first gradually erecting potential walls around two regions to form boxes
that contain the structures to be interchanged, then continuously inter-
changing the two boxes, and then lowering the potential walls, removing
the boxes. This adiabatic process may result in a Berry phase change.

A homotopy, however, is not a true permutation of atomic parts, and
may have little to do one. Nor does a homotopy theory of particles relieve
the ultraviolet divergences of field theory.

The idea of the permutation group acting on a set of quanta arose from
a classical preconception. First the composite was erroneously represented
by a tensor product, and then this error was corrected by specifying a
representation of the permutations of the parts, namely by scalars.

'In the sense of Finkelstein (1996). Our q semigroup is defined by a double algebra that
need not be Hopfian. The Hopf property seems to be a classical vestige, appropriate when
there is a classical space-time underlying the network.



We prefer not to found a correct theory on an erroneous hypothesis.
We turn our attention from unfeasible permutations to feasible actions.
The quantum theory must tell us what actions are possible.

By the statistics of a quantum we shall mean the quantification functor
Q, assumed to exist, from the elementary system s to the composite system
S = Qs. In the present work,for example, the elementary system is the
point P and S = QP = SqP. Historically the quantification functor Q
has been called “second quantization” by physicists.

Our reformulation obviously encompasses the existing usage. For F-
D statistics, the quantification functor is @ = Grass, which forms the
Grassmann (exterior) algebra of the vector space on which it acts. For
E-B, @ = Sym, which forms from any vector space the symmetric tensor
algebra of that space. For M-B statistics, @ = Ten, which forms the
tensor algebra over its vector space argument.

The functor Q by definition also defines a representation of the mor-
phisms of In P by morphisms of the composite space In S.

We imbed permutations in the orthogonal group by applying them to
the axes of a frame in the input vector space of the individual system.
Then relative to any frame in InP, Q also defines a representation of
the permutation group Sy C O(N), thus subsuming the usual concept of
statistics.

Now the classical concept of permutation group dissolves into the
quantum concept of the automorphism group of the input vector space of
the individual. Permutations have no distinguished role within the larger
group of orthogonal transformations of the individual.

For any one frame, to be sure, the permutations of the frame vectors
form a subgroup of the automorphism group. But this is not an invariant
subgroup and has no invariant meaning.

Permutations are just the automorphisms of a classical discrete state
space. The automorphisms of a quantum system are the non-singular
isometries of its mode-vector space. In that sense the orthogonal trans-
formations of the individual mode-vector space are the quantum analogues
of the classical particle permutation operators. This is why we refer to
these linear operators as permutors. Unlike permutations, however, the
permutors form a continuous Lie group and a semisimple group. This is
where the classical groups come in.

The representations of the permutation group used in the usual statis-
tics are fully reducible, being commutative. The entire Hilbert space re-
duces to a direct sum of 1-dimensional rays. In the present non-commutative
statistics we must instead demand an irreducible representation of the
permutors, since all operations are expressed in terms of permutors. To
represent the spin 2-valuedness correctly, we also required [Finkelstein and
Gibbs (1993), Finkelstein (1996)] the representation to be 2-valued.

3.1 Classical-group statistics

Each of the classical groups G leads naturally to its own special statistics
as follows. Recall that each classical group G can be identified with the
automorphism group of a unique associated scalar-product module. Inter-
pret this module as the input module InI of a variant individual quantum



system I. The many-system quantification is defined by giving the op-
erator algebra of the quantified I as a quotient of the tensor ring of Inl
modulo I'-invariant quadratic commutation relations

Umwc ™k — fr; =0 (5)

among the basis vectors u,, of Inl. Here f is the G-invariant scalar-
product form on InI and the commutation tensor ¢ is a G-invariant bilin-
ear form
8™kt 8™ (6)
in the basis vectors, with the sign fixed so that ¢ has the symmetry of f.
It is easy to see that the A series, with its Hermitian symmetric scalar
product, leads to Fermi-Dirac statistics, and the C series, with its anti-
symmetric inner product, to Bose-Einstein. Here is the whole pattern,
omitting the exceptional groups:

Group G: A B-D C

1-body vector space: Hilbert Quadratic Symplectic
Statistics: F-D S-W B-E

Composite: Set Squad Sib

N-body ring: Fermi Clifford Heisenberg
N-body module: Grassmann Spinor Symmetric tensor

The groups G of the B and D series act on real quadratic spaces Inl =
R(N4,N_) := N;Ro N_R with dimension N4 + N_ and signature N4 —
N.. They lead to a 2-valued irreducible representation of permutations,
unlike the statistics of any of the presently known quanta.

The 2-valued (“fractional linear”) irreducible representations of the
permutation group were reported by Wiman (1898) and enumerated and
described by Schur (1911). They have been investigated by Hamermesh
(1962), Karpilovsky (1985), Stembridge (1989), Hoffman and Humphreys
(1992), and many others. Finkelstein and Gibbs (1993) and Finkelstein
(1996) used a 2-valued representation of the permutation group for space-
time points without recognizing it as a variant statistics. Wilczek (1997) is
the first to have recognized projective or 2-valued statistics as a statistics,
proposing Schur’s spinor representation of Sy for quasi-particles of the
fractional quantum Hall effect. I therefore call the projective statistics of
the B — D groups the Schur-Wilczek or S-W statistics.

A composite with S-W statistics I call a squad and write S = Sql.

Maxwell-Boltzmann statistics is the case f = 0; A composite with M-
B statistics is known as a sequence so we designate the M-B quantification
functor by Q@ = Seq.

The many-body module shown for each group is the “square root”
of the many-body operator ring above it in the sense that, schematically
speaking, ring ~ module ® module’.

In the A and C lines the many-body module has an invariant grade.
This makes these statistics appropriate for indistinguishable elements,
which are counted by the grade. The B — D lines have ungraded modules.
We use them for distinguishable elements. The number of elements is the
dimension of the one-body module.



There are classical sets and sibs as well as quantum but no classi-
cal squads. The squad incorporates superposition more deeply than the
sequence, sib, or set. Calling it a SQUAd reminds us of its intrinsic QUAn-
tum content.

In the early days of quantum physics, the 2-valued representations
of the rotation group were overlooked for a time because they do not
occur in a tensor product of spinless quanta. We overlooked the 2-valued
representations of the permutation group and 2-valued statistics for a
longer time for much the same reason: They do not arise in a tensor
product of the vector spaces of individual quanta.

The S-W statistics permits a simpler proposal for the point than was
possible before:

D2.2 Point statistics The system is a squad of points.

That is, actions on the system S are maximally represented by rays
in a Clifford algebra CLff(N4, N_) over a quadratic space ¥ = InP =
R(N4 N.), instead of operators on a Hilbert space. We call an element
of this Clifford algebra a cliffor.

3.2 Space-time dimension as order parameter

In a theory of space-time quanta, the dimension and signature of space-
time are order parameters of the vacuum condensate, and one searches
for some reason why the effective space-time of the classical continuum
limit is a Maxwell-Boltzmann composite (sequence) of dimension 4 and
signature 2 or -2, and why the effective quantum theory of systems in that
space-time is complex rather than real.

S-W statistics is not inconsistent with a quantum condensation. Al-
though usually we associate condensates with E-B statistics, we have never
actually seen a true B-E condensate. Liquid He®*, for example, is a con-
densate of fermions. Electrons, protons and neutrons form quasibosonic
octets, He atoms, and thereby condense into a superfluid. Likewise su-
perconductivity is an F-D condensation that proceeds via Cooper pairs
instead of Helium octets.

In S-W statistics, squads of eight (octads) and four (tetrads), are spe-
cial, yhaks to the periodicities of the spinorial “clock” [Atiyah, Bott,
Shapiro (1964)] and “chessboard” [Budinich, Trautman (1988)]. The
squad of 4N points, for example, is algebraically isomorphic to the se-
quence of N tetrads.

This means that points with S-W statistics naturally form into tetrads
with quasi-M-B statistics. This quantum M-B space includes a B-E sub-
space in which condensation can proceed as usual. Each of these tetrads
with signature 3-1 or 4-0 has input spinors of four real components, es-
sentially Majorana spinors. (Tetrads of signatures 2-2, 1-3 or 0-4 have
input spinors with 2 quaternionic components or 8 real components.) In
the present theory it is natural to relate this mathematical fact to the
observed statistics and dimensionality of space-time in the classical con-
tinuum limit, where M-B statistics has implicitly ruled since Euclid.

10



The one theory to my knowledge in which the Higgs field is not an
ad hoc add-on but a structural element arising from a deeper principle is
one which a variable Clifford element n(z) serving as i¢% in the quantum
action principle [Finkelstein et al. (1962)] is discovered to be a natural
Higgs field. In this n theory the Clifford algebra that appears is Cliff(0, 2),
the quaternions, and so there was enough Clifford materiel to construct
SU; isospin but not SUj3 color, and we abandoned the Clifford road. S-W
statistics gives us embarrassing riches of fundamental Clifford units, and
so we take to the Clifford road once more.

3.3 Relativistic content, quantum form

Quantum kinematics has a simple basic syntax. It bi-uniquely corre-
sponds each action on the system S and each tranformation of the ex-
perimenter with an endomorphism of the projective geometry of an input
vector space InS. This endomorphism in turn is projectively, and there-
fore non-uniquely, represented by a linear operator on InS. This syntax
applies equally well to an oscillator, an atom, a field or a crystal as long
as it is isolated between our determinations of it. In application to a field
theory the quantum algebraic syntax is necessarily non-local because its
basic concepts and operators refer to entire space-like surfaces. We un-
derstand this to be a valid representation of the quantum experimenter,
who is a global entity, not a local one.

Quantum kinematics focuses our attention on the operation semigroup
and gives its possible structures. It gives us an open grammatical form
that we have to fill with specific physical content by giving experimental
meaning to the operators. It gives no hint at all what system to study.

General relativity, on the contrary, tells us exactly what to study: the
causal relations among events, as revealed by signaling operations. These
are local relations, defining the light-cone field of space-time, but they are
not quantum. General relativity omits fine detail.

To integrate the quantum kinematics with the general relativistic dy-
namics requires us to give quantum form to a relativistic content.

The deepest quantum algebra we have today is that of the standard
model, generated by gauge, leptoquark and Higgs fields dwelling on a
frozen Minkowski space-time manifold without gravity. A separate classi-
cal theory based on general covariance and equivalence principles describes
the gravitation of smoothed distributions of energy and momentum. This
split is clearly a transitional phase. Intensive search for a simpler, deeper
algebra goes on widely today.

The algebra we seek no longer represents a field theory. All field the-
ories (including string and membrane theories) inherit a basic one-way
coupling from space-time to field, evidence of a contraction in the Inonu-
Wigner sense [Inonu and Wigner (1952); Marks et al. (1999)]. They also
suffer from the measurement problems of the Bohr-Rosenfeld-DeWitt kind
already mentioned, associated with horizon production. These genetic de-
fects indicate that the present field theories are degenerations of a more
atomistic quantum theory of the dynamic, with at least one new funda-
mental constant, a time 7, comparable to the time formed from the Higgs
mass and greater than the Planck time Tp by many orders of magnitude.

11



We must expect discreteness only for time eigenvalues resulting from sin-
gle measurements, not for expectation values like scattering lengths, which
can be arbitrarily small.

The theory of the quantum dynamic must degenerate both to a g
field theory and to general relativity, perhaps in two distinct appropriate
singular limits. One simplification of q space-time theory compared to c is
that in the limit N — oo the q theory can be exactly invariant under the
Poincaré group and the standard model groups even for finite 7. It would
suffice if in the limit 7 — 0, N7 — oo we recover classical space-time and
general relativity; and in the limit N — oo, 7 ~ 1, quantum field theory.

3.4 Relativization of locality

The locality concept must be relativized by such a consolidation of quan-
tum and relativity theory. The absolute locality principle so basic to
Einstein is somewhat alien to quantum theory, though incorporated in
our present hodge-podge relativistic quantum field physics. Sudarshan
pointed this out to me years ago, but it conflicts so strongly with the
locality principles of general relativity that I heed him only now.

The conflict is indicated at the most elementary level by the fact that
from the algebraic point of view that is supposed to dominate quan-
tum theory, there is no absolute difference between position and momen-
tum. One may transform from position-fixing modes to momentum-fixing
modes with a unitary transformation, an application of the superposition
principle. But locality refers specificaily to position, not momentum. For
a local interaction to occur between objects, their positions in space must
agree at some time, but they can be far apart in their momenta. Locality
breaks the unitary symmetry of quantum algebra.

In the present context, to make an absolute distinction between po-
sition and momentum at the one-point level would break the orthogonal
invariance of the mode space of the quantum point.

We infer that the chronon has an 8-dimensional space has an orthog-
onal symetry group and the familiar distinction between position and
momentum arises from a condensation of many chronons into the usual
space-time.

Therefore the dynamic has no absolute locality concept but only a
relative locality, fixed by the dynamic D. While the condensation of a
manifold out of a collection of points is quite special and requires N —
00, in that special case the system variables and their representation in
the composite are quite numerous enough to define both position and
momentum variables and distinguish between them.

Physics has progressed little in the direction of quantum space-time.
Such important programs as quantum gravity, supergravity, grand unified
theory, string theory, non-commutative geometry, and the standard model
all still incorporate absolute concepts of locality and space-time, while our
quantum relativity program to relativize them is still in a formative phase.
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4 Transporting and transforming

Quantum theory and general relativity are both theories of composites,
but they differ in how they how they connect their elements to form these
composites. To reconcile these differences we first formulate them.

In general relativity the entities composed include the values of clas-
sical fields (like gravity) at different points of space-time. In order to
agree with experience, and specifically with locality and the equivalence
principle, when we compare field variables at different points, as in form-
ing field gradients, we supplement them in practice with interpoint vari-
ables, connections defining transports of the fields along paths joining
their points. The relativistic whole is more than the product of the origi-
nal parts by these gauge transport variables, which now dominate modern
particle physics and general relativity.

In elementary quantum mechanics, however, the parts are represented
by input vectors ¥, ¢, ... of the subsystems, and the whole is represented
by a product ¥ V ¢ V ... of its parts. The parts are not compared by
continuous transport as in general relativity but, as different modes in
the individual Hilbert space, by transposition in the usual concept of
statistics, and by superposition in the present concept.

A statistics is called commutative (or Abelian, or central) if it repre-
sents all permutations by commuting operators, such as numbers. The
B-E and F-D statistics are commutative, but not the M-B or S-W.

4.1 Connection variables

A system of indistinguishable particles has no connection variables. We
can swap two subsystems in any of these products without further inter-
system structure of the kind demanded by Einstein locality. The quantum
algebra of the whole is merely a product of its parts.

To supply the necessary intersystemic variables, the standard model
first assumes a classical fiber bundle theory providing all the intersystemic
variables seen in nature, and then attempts to quantize this theory, us-
ing Bose statistics for the intersystemic quanta, Fermi for the leptoquark
sources, and, implicitly, M-B for ¢ space-time points. This hodge-podge
has not worked for gravity beyond the weak-field approximation, and is
clearly a temporary and provisional method for dealing with the other
interactions.

The S-W statistics provides new intersystemic variables, the operators
transforming its individuals into each other. The composite with this
statistics is not a product of its parts. Besides the variables of the parts,
It has new exchange variables, finite and infinitesimal; we refer to them
as swaps and orthospins respectively.

S-W statistics introduces new variables to represent permutations just
as new variables were introduced in the early days of quantum physics to
represent orthogonal transformations in geometrical space, namely spins.

Here the basic new variable is the swap operator Tm» that projectively
represents the finite transformation

(mn) : Ym = Yo, Yn = Yn, Ve — Ye, k # m,n (7)

13



a basis-dependent orthogonal transformation within the individual vector
space V. Spin represents the infinitesimal orthogonal transformation

Amn:wm'_’@bruwn'_’_wnywk’—’07k7‘ém»n~ (8)

When necessary to distinguish this from a Lorentz-group spin operator, we
call it orthospin. Both orthospin and swap are represented by operators
on orthospinors.

Swap and orthospin are conceptually more primitive than (Lorentz)
spin as permutation is more primitive than rotation, invoking no spatial
concepts of length or angle but only quantum algebra. Yet much of clas-
sical Euclidean geometry in N dimensions can be formulated with swaps
of N structureless quantum points. It seems conceivable that all physical
actions and gauge transformations are ultimately composed of swaps of
space-time points.

The vacuum is represented by a cliffor with a crystalline symmetry
q group. Standard-model field-quanta are defects in the vacuum crystal
structure, created and annihilated by swaps as patterns in a fabric are
created and annihilated by transposing threads.

A seemingly many-valued statistics arises for quasi-particles in two-
dimensional phenomenological theories like high-temperature supercon-
ductivity, even for systems of particles with 1-valued statistics, because
there are many homotopically distinct paths by which two quasi-particles
can be transposed. Each of these homotopy classes may result in a differ-
ent quantum phase, depending on the enclosed gauge flux. We call such
many-phased statistics “gauge statistics”. When commutative, gauge
statistics are projectively equivalent to 1-valued statistics.

For particles in three or more dimensions all transpositions are homo-
topic to each other and gauge statistics does not arise.

The fundamental 2-valuedness we treat here arises in any number of
space-time dimensions, because it is not based on homotopy or even on
the continuum, but on the fact that the permutation group on more than
three objects is doubly covered by its representation group, the algebraic
counterpart for finite groups of the universal covering group of a Lie group.

Braid statistics is an infinite-valued, infinite-dimensional representa-
tion of Sy. Since we restrict ourselves to finite-dimensional representa-
tions of On,_ ~_, we do not consider braid statistics further.

4.2 The chronon and the Planck time

A crystal has many characteristic times with different physical meanings.
So does the vacuum.

The space-time analogue of the crystal cell-size ! is the fundamental
time-scale T of the space-time q cell (which may be converted to a length
using lightspeed c). Several apparently independent thought experiments
based on existing quantum field theory and general relativity indicate
that the Planck time Tp is some 15 orders of magnitude smaller than 7:
T2 10 Tp.

In our application of the coherent state method, some number N, > 1
of quantum events cohere into one classical space-time event. Call N, the
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coherence number of the vacuum. This is a vacuum analogue of the pure
number (A./1)? for a superconductor, where ). is the Ginzburg-Landau
coherence length, [ is the the cell size of the crystal, and D = 2 or 3 is the
dimensionality of the superconductor.

Further, each mode that can not propagate in a crystal has a penetra-
tion depth [p. Similarly each mode to which the space-time g crystal is not
transparent has a penetration number Np, the analogue of the penetration
depth in units of the cell size. Large enough penetration numbers may
manifest experimentally as masses or Compton wavelengths, for example
of gauge fields.

A well-known elementary qualitative argument equates the Planck
mass to a quantum black-hole mass. That is, the Planck length is not
the cell size but is the penetration length of a high mode of the network.

One might expect length eigenvalues to have a discrete spectrum in a fi-
nite theory, with the cell size as the first eigenvalue. Then 7 is the limiting
precision of a meaningful non-zero eigenvalue of a continuum coordinate.
A penetration length, however, is a mean value, not an eigenvalue. The
Planck time is the limit of precision at which even an expectation value
of a continuum coordinate can have meaning, solely due to gravitational
effects. It is inevitable for mean values to occur that are much smaller
than the first non-zero eigenvalue.

4.3 How F-D and B-E statistics can emerge from
S-W

For each swap (Im) where v;2 = —1 and ym? = +1, the operators
Ym — VN
c=c(l,m = —
(1, m) 7
c=c(lm) = ImiM (9)

V2

obey the anticommutation relation of a fermionic creator ¢ and annihilator
¢. Then a set of such operators

Co 1= l"%’e_, (10)

with no two having the same value of n, or of m, taken with the &, obeys
the fermionic anticommutation relations for the creators and annihilators
of orthogonal modes |a) of a fermion.

In turn, the fermionic creators and annihilators of an infinite sequence
[0),]1),12),... of such fermionic modes, each of which may be occupied
or not, can be combined to make one boson creator and annihilator, in
NUMErous ways.

S-W statistics describes a squad of 4 by a real spinor of 4 or 8 com-
ponents, depending oh the signature of the squad. The representation
used in Finkelstein and Gibbs (1993) and Finkelstein (1996) described
four elements by a spinor of 24 components.

We maximally describe the space-time-matter-action dynamic D itself
by a cliffor D € Cliff(N;, N_). A suitable D is to define both the action
functionals of q field theory and gravity in appropriate degenerate limits.
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Every sharp description of a ¢ permutation is a collection of disjoint
cycles. This is indeed a network, but a rather trivial one, a disconnected
collection of disjoint loops of various sizes, without crossings or interaction
vertices. The S-W statistics associates a Clifford extensor with every
such permutation and its network. For physics, we need networks with
crossings.

The operator algebra of the system of physics is now the possibly huge
Clifford algebra EndInS = Clif QInP. A g network is described by an
element of this algebra. Operations on the network in turn, including
space-time coordinates, infinitesimal translations, and statistical opera-
tors, are represented by linear operators on (not in) Clff QInP, that is,
by second-order operators on X. Spin is presumably a concept of more
limited validity than swap, requiring a local Minkowskian space-time for
its meaning.

5 Does nature swap or spin?

We have given a connection between the classical groups and quantum
statistics and used it to find a natural home on the B and D lines for
the newest of the quantum statistics, the Schur-Wilczek. This is also
the most plausible statistics for space-time points. For it is the only
one that provides connection variables growing appropriately in number
with the point population, the only one that gives rise to 2-valued spinor
representations of rotations, the only one that deals with distinguishable
elements, and the only one that leads to an M-B sequence of tetrads like
the M-B assembly of the usual space-time points, with four dimensions
and all.

It seems that the spinorial chessboard may be intimately connected
with the fine-structure of space-time, as intimated by the logician C. L.
Dodgson.

Because intrinsic spin is so much simpler than orbital angular momen-
tum and the other variables of quantum field theory, space-time architects
like Penrose (1971) have considered that spin might be more fundamen-
tal than space-time. But when the space-time is resolved into quantum
elements and the classical Lorentz group loses meaning, it is not easy to
give physical meaning to spin. I propose that spin derives from swap, and
the 2-valued spin representation from a deeper 2-valued statistics.

Empirically, spin and statistics are correlated for quanta, with the
operator W of 27 rotation equal to the operator X of two-quantum trans-
position. The combinatory structure we study now lies below the particle
level. There the spin-statistics law is ignored even in present theories, in
the sense that classical space-time points have no internal degrees of free-
dom and transform as spin-0 (invariant) entities, but have M-B statistics,
not B-E, in being distinguishable. Earlier we proposed that the spin-
statistics correlation arose from the fact that the processes W and X are
homotopic [Finkelstein and Misner (1959)]. It seems now that its source
is still deeper; that spin is correlated with statistics because fundamen-
tally spin is statistics, and specifically is swap, a projective permutation
operator.
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